Polymeric Nanocomposite Membranes for Next Generation Pervaporation Process: Strategies, Challenges and Future Prospects
نویسندگان
چکیده
Pervaporation (PV) has been considered as one of the most active and promising areas in membrane technologies in separating close boiling or azeotropic liquid mixtures, heat sensitive biomaterials, water or organics from its mixtures that are indispensable constituents for various important chemical and bio-separations. In the PV process, the membrane plays the most pivotal role and is of paramount importance in governing the overall efficiency. This article evaluates and collaborates the current research towards the development of next generation nanomaterials (NMs) and embedded polymeric membranes with regard to its synthesis, fabrication and application strategies, challenges and future prospects.
منابع مشابه
Reverse Electrodialysis for Salinity Gradient Power Generation: Challenges and Future Perspectives
Salinity gradient energy, which is also known as Blue energy, is a renewable energy form that can be extracted from the mixing of two solutions with different salinities. About 80% of the current global electricity demand could potentially be covered by this energy source. Among several energy extraction technologie...
متن کاملMechanistic Modeling of Organic Compounds Separation from Water via Polymeric Membranes
A mathematical model considering mass and momentum transfer was developed for simulation of ethanol dewatering via pervaporation process. The process involves removal of water from a water/ethanol liquid mixture using a dense polymeric membrane. The model domain was divided into two compartments including feed and membrane. For a description of water transport in ...
متن کاملModification of Polymeric Membrane for Energy Generation through Salinity Gradient: A Short Review
Salinity gradient energy (SGE) refers to the energy created from the difference in salt concentration between two streams. There are three types of SGE namely, pressure retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix). All these technologies require membrane for the system to be operational. In this short review, the membranes modifications for each principl...
متن کاملDevelopment and Characterization of Nanocomposite Membranes based on Chitosan, Polystyrene and Montmorillonite for Pervaporation Separation of Phenol and Chlorophenols from Water
The novel nanocomposite membranes were successfully prepared by the incorporation of different concentrations (5, 10, and 15 wt%) of montmorillonite (MMT) as a nanoadditive into a blend of chitosan/polystyrene (CS/PS) at a ratio of 3:1 on the basis of solution-casting method and they were subsequently used for the separation of phenol, p-chlorophenol, and 2,4-dichlorophenol from water through p...
متن کاملNanocomposite Membranes with Magnesium, Titanium, Iron and Silver Nanoparticles - A Review
Nanocomposite membrane comprising of both organic and inorganic material qualities have become a prime focus for the next generation membranes. Nanocomposite may consist of hard permeable or impermeable inorganic particles, such as zeolites, carbon molecular sieves and, silica and carbon nanotubes, metal oxide blended with continuous polymeric matrix presents an attract...
متن کامل